Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Int. j. cardiovasc. sci. (Impr.) ; 35(3): 410-418, May-June 2022. graf
Article in English | WHO COVID, LILACS (Americas) | ID: covidwho-20244272

ABSTRACT

Abstract An acute respiratory syndrome caused by SARS-CoV2 was declared a pandemic by the World Health Organization. Current data in the world and in Brazil show that approximately 40% of patients who died have some type of cardiac comorbidity. There are also robust reports showing an increase in IL-6 / IL-1B / TNF-alpha and the presence of lymphopenia in patients with COVID-19. Our team and others have shown that increased cytokines are the link between arrhythmias/Left ventricular dysfunction and the immune system in different diseases. In addition, it has been well demonstrated that lymphopenia can not only be a good marker, but also a factor that causes heart failure. Thus, the present review focused on the role of the immune system upon the cardiac alterations observed in the SARS-CoV2 infection. Additionally, it was well described that SARS-CoV-2 is able to infect cardiac cells. Therefore, here it will be reviewed in deep.


Subject(s)
Arrhythmias, Cardiac/complications , SARS-CoV-2/pathogenicity , COVID-19/complications , Heart Failure/etiology , Myocardium/immunology , Arrhythmias, Cardiac/physiopathology , Cytokines , Cytokines/immunology , Coronavirus/pathogenicity , Ventricular Dysfunction, Left/physiopathology , Myocytes, Cardiac/pathology , Severe Acute Respiratory Syndrome , Heart Failure/complications , Lymphopenia/complications
3.
Int J Mol Sci ; 22(18)2021 Sep 13.
Article in English | MEDLINE | ID: covidwho-1409702

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic with high infectivity and mortality has caused severe social and economic impacts worldwide. Growing reports of COVID-19 patients with multi-organ damage indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) may also disturb the cardiovascular system. Herein, we used human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) as the in vitro platform to examine the consequence of SARS-CoV2 infection on iCMs. Differentiated iCMs expressed the primary SARS-CoV2 receptor angiotensin-converting enzyme-II (ACE2) and the transmembrane protease serine type 2 (TMPRSS2) receptor suggesting the susceptibility of iCMs to SARS-CoV2. Following the infection of iCMs with SARS-CoV2, the viral nucleocapsid (N) protein was detected in the host cells, demonstrating the successful infection. Bioinformatics analysis revealed that the SARS-CoV2 infection upregulates several inflammation-related genes, including the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The pretreatment of iCMs with TNF-α for 24 h, significantly increased the expression of ACE2 and TMPRSS2, SASR-CoV2 entry receptors. The TNF-α pretreatment enhanced the entry of GFP-expressing SARS-CoV2 pseudovirus into iCMs, and the neutralization of TNF-α ameliorated the TNF-α-enhanced viral entry. Collectively, SARS-CoV2 elevated TNF-α expression, which in turn enhanced the SARS-CoV2 viral entry. Our findings suggest that, TNF-α may participate in the cytokine storm and aggravate the myocardial damage in COVID-19 patients.


Subject(s)
COVID-19/complications , Cardiovascular Diseases/immunology , Cytokine Release Syndrome/immunology , SARS-CoV-2/immunology , Tumor Necrosis Factor-alpha/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cardiovascular Diseases/virology , Cell Differentiation , Cell Line , Computational Biology , Coronavirus Nucleocapsid Proteins/metabolism , Cytokine Release Syndrome/pathology , Cytokine Release Syndrome/virology , Humans , Induced Pluripotent Stem Cells , Myocardium/cytology , Myocardium/immunology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/virology , Phosphoproteins/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Up-Regulation/immunology , Virus Internalization/drug effects
4.
Front Immunol ; 12: 624703, 2021.
Article in English | MEDLINE | ID: covidwho-1354863

ABSTRACT

Accumulating evidence suggests that the breakdown of immune tolerance plays an important role in the development of myocarditis triggered by cardiotropic microbial infections. Genetic deletion of immune checkpoint molecules that are crucial for maintaining self-tolerance causes spontaneous myocarditis in mice, and cancer treatment with immune checkpoint inhibitors can induce myocarditis in humans. These results suggest that the loss of immune tolerance results in myocarditis. The tissue microenvironment influences the local immune dysregulation in autoimmunity. Recently, tenascin-C (TN-C) has been found to play a role as a local regulator of inflammation through various molecular mechanisms. TN-C is a nonstructural extracellular matrix glycoprotein expressed in the heart during early embryonic development, as well as during tissue injury or active tissue remodeling, in a spatiotemporally restricted manner. In a mouse model of autoimmune myocarditis, TN-C was detectable before inflammatory cell infiltration and myocytolysis became histologically evident; it was strongly expressed during active inflammation and disappeared with healing. TN-C activates dendritic cells to generate pathogenic autoreactive T cells and forms an important link between innate and acquired immunity.


Subject(s)
Autoimmune Diseases/metabolism , Autoimmunity , Cardiomyopathies/metabolism , Inflammation Mediators/metabolism , Myocarditis/metabolism , Myocardium/metabolism , Tenascin/metabolism , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Cardiomyopathies/immunology , Cardiomyopathies/pathology , Cellular Microenvironment , Humans , Myocarditis/immunology , Myocarditis/pathology , Myocardium/immunology , Myocardium/pathology , Self Tolerance , Signal Transduction
5.
Front Immunol ; 12: 595150, 2021.
Article in English | MEDLINE | ID: covidwho-1311373

ABSTRACT

As one of the current global health conundrums, COVID-19 pandemic caused a dramatic increase of cases exceeding 79 million and 1.7 million deaths worldwide. Severe presentation of COVID-19 is characterized by cytokine storm and chronic inflammation resulting in multi-organ dysfunction. Currently, it is unclear whether extrapulmonary tissues contribute to the cytokine storm mediated-disease exacerbation. In this study, we applied systems immunology analysis to investigate the immunomodulatory effects of SARS-CoV-2 infection in lung, liver, kidney, and heart tissues and the potential contribution of these tissues to cytokines production. Notably, genes associated with neutrophil-mediated immune response (e.g. CXCL1) were particularly upregulated in lung, whereas genes associated with eosinophil-mediated immune response (e.g. CCL11) were particularly upregulated in heart tissue. In contrast, immune responses mediated by monocytes, dendritic cells, T-cells and B-cells were almost similarly dysregulated in all tissue types. Focused analysis of 14 cytokines classically upregulated in COVID-19 patients revealed that only some of these cytokines are dysregulated in lung tissue, whereas the other cytokines are upregulated in extrapulmonary tissues (e.g. IL6 and IL2RA). Investigations of potential mechanisms by which SARS-CoV-2 modulates the immune response and cytokine production revealed a marked dysregulation of NF-κB signaling particularly CBM complex and the NF-κB inhibitor BCL3. Moreover, overexpression of mucin family genes (e.g. MUC3A, MUC4, MUC5B, MUC16, and MUC17) and HSP90AB1 suggest that the exacerbated inflammation activated pulmonary and extrapulmonary tissues remodeling. In addition, we identified multiple sets of immune response associated genes upregulated in a tissue-specific manner (DCLRE1C, CHI3L1, and PARP14 in lung; APOA4, NFASC, WIPF3, and CD34 in liver; LILRA5, ISG20, S100A12, and HLX in kidney; and ASS1 and PTPN1 in heart). Altogether, these findings suggest that the cytokines storm triggered by SARS-CoV-2 infection is potentially the result of dysregulated cytokine production by inflamed pulmonary and extrapulmonary (e.g. liver, kidney, and heart) tissues.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Kidney/immunology , Liver/immunology , Lung/immunology , Myocardium/immunology , Pandemics , SARS-CoV-2/immunology , Severity of Illness Index , Biomarkers/blood , COVID-19/blood , COVID-19/complications , Case-Control Studies , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokines/biosynthesis , Humans , Immunity/genetics , Monocytes/immunology , Neutrophils/immunology , Transcriptome , Up-Regulation/genetics
6.
PLoS Pathog ; 17(7): e1009705, 2021 07.
Article in English | MEDLINE | ID: covidwho-1311291

ABSTRACT

COVID-19 (coronavirus disease 2019) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection is a disease affecting several organ systems. A model that captures all clinical symptoms of COVID-19 as well as long-haulers disease is needed. We investigated the host responses associated with infection in several major organ systems including the respiratory tract, the heart, and the kidneys after SARS-CoV-2 infection in Syrian hamsters. We found significant increases in inflammatory cytokines (IL-6, IL-1beta, and TNF) and type II interferons whereas type I interferons were inhibited. Examination of extrapulmonary tissue indicated inflammation in the kidney, liver, and heart which also lacked type I interferon upregulation. Histologically, the heart had evidence of myocarditis and microthrombi while the kidney had tubular inflammation. These results give insight into the multiorgan disease experienced by people with COVID-19 and possibly the prolonged disease in people with post-acute sequelae of SARS-CoV-2 (PASC).


Subject(s)
COVID-19/immunology , Down-Regulation/immunology , Interferon Type I/immunology , Kidney/immunology , Myocardium/immunology , Respiratory System/immunology , SARS-CoV-2/immunology , Animals , COVID-19/pathology , Cricetinae , Disease Models, Animal , Humans , Inflammation/immunology , Inflammation/pathology , Kidney/pathology , Kidney/virology , Male , Mesocricetus , Myocardium/pathology , Respiratory System/pathology , Respiratory System/virology
7.
Cardiovasc Pathol ; 54: 107370, 2021.
Article in English | MEDLINE | ID: covidwho-1309178

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is commonly associated with myocardial injury and heart failure. The pathophysiology behind this phenomenon remains unclear, with many diverse and multifaceted hypotheses. To contribute to this understanding, we describe the underlying cardiac findings in fifty patients who died with coronavirus disease 2019 (COVID-19). METHODS: Included were autopsies performed on patients with a positive SARS-CoV-2 reverse-transcriptase-polymerase-chain reaction test from the index hospitalization. In the case of out-of-hospital death, patients were included if post-mortem testing was positive. Complete autopsies were performed according to a COVID-19 safety protocol, and all patients underwent both macroscopic and microscopic examination. If available, laboratory findings and echocardiograms were reported. RESULTS: The median age of the decedents was 63.5 years. The most common comorbidities included hypertension (90.0%), diabetes (56.0%) and obesity (50.0%). Lymphocytic inflammatory infiltrates in the heart were present in eight (16.0%) patients, with focal myocarditis present in two (4.0%) patients. Acute myocardial ischemia was observed in eight (16.0%) patients. The most common findings were myocardial fibrosis (80.0%), hypertrophy (72.0%), and microthrombi (66.0%). The most common causes of death were COVID-19 pneumonia in 18 (36.0%), COVID-19 pneumonia with bacterial superinfection in 12 (24.0%), and COVID-19 pneumonia with pulmonary embolism in 10 (20.0%) patients. CONCLUSIONS: Cardiovascular comorbidities were prevalent, and pathologic changes associated with hypertensive and atherosclerotic cardiovascular disease were the most common findings. Despite markedly elevated inflammatory markers and cardiac enzymes, few patients exhibited inflammatory infiltrates or necrosis within cardiac myocytes. A unifying pathophysiologic mechanism behind myocardial injury in COVID-19 remains elusive, and additional autopsy studies are needed.


Subject(s)
COVID-19/pathology , Heart Diseases/pathology , Myocardium/pathology , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , Atherosclerosis/mortality , Atherosclerosis/pathology , Autopsy , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Comorbidity , Female , Heart Diseases/immunology , Heart Diseases/mortality , Heart Diseases/virology , Host-Pathogen Interactions , Humans , Hypertension/mortality , Hypertension/pathology , Inflammation Mediators/analysis , Male , Middle Aged , Myocardium/immunology , Necrosis , SARS-CoV-2/immunology , Up-Regulation
8.
Cardiovasc Pathol ; 54: 107361, 2021.
Article in English | MEDLINE | ID: covidwho-1281392

ABSTRACT

COVID-19 has a significant effect upon the cardiovascular system. While a number of different cardiovascular histopathologies have been described at post-mortem examination, the incidence of typical viral myocarditis in COVID-19 positive patients appears very low [1-3]. In this study, we further characterize and quantify the inflammatory cell infiltrate in a COVID-19 study cohort and compare the findings to both an age and disease matched control cohort and a cohort of patients diagnosed with typical inflammatory myocarditis. All study and control cohorts had 1 or more of the comorbidities most commonly associated with severe disease (hypertension, type II diabetes, obesity, or known cardiovascular disease). The results demonstrate a skewed distribution of the number of CD68+ cells in COVID-19 hearts, with upper quantiles showing a significant increase as compared to both matched control hearts, and those with myocarditis. In contrast, hearts from typical inflammatory myocarditis contained increased numbers of CD4+, and CD8+ cells compared to both COVID-19 and control cohorts. In conclusion, the presence of an increased number of CD68+ cells suggests that COVID-19 may incite a form of myocarditis different from typical viral myocarditis, and associated with diffusely infiltrative cells of monocytes/macrophage lineage.


Subject(s)
Antigens, CD/analysis , Antigens, Differentiation, Myelomonocytic/analysis , COVID-19/immunology , Macrophages/immunology , Myocarditis/immunology , Myocardium/immunology , Adult , Aged , Autopsy , Biomarkers/analysis , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Female , Host-Pathogen Interactions , Humans , Immunohistochemistry , Macrophages/virology , Male , Middle Aged , Myocarditis/mortality , Myocarditis/pathology , Myocarditis/virology , Myocardium/pathology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
9.
Int Arch Allergy Immunol ; 182(8): 765-774, 2021.
Article in English | MEDLINE | ID: covidwho-1234321

ABSTRACT

PURPOSE: The aim of this study is to evaluate the frequency of cardiac involvement in patients with coronavirus disease 2019 (COVID-19), possible immune mechanisms of myocardial injury, and the place of cardiovascular pathology among other prognostic factors. METHODS: The study included 86 patients (48 male, 60.2 ± 16.6 years) with COVID-19. In addition to common investigation, examination of troponin T (n = 18) and anti-heart antibodies (AHA, n = 34) were used. The average hospital period was 14 [12; 18] days. RESULTS: The incidence of cardiovascular disease and symptoms was 45.3%. Arrhythmias, heart failure, low-QRS voltage, repolarization disorders, and pericardial effusion were the typical for coronavirus cardiac injury. The level of AHA was increased in 73.5%. Significant (p < 0.05) correlations of AHA level with inflammatory activity, pneumonia, respiratory failure, cardiac symptoms, and death were found. D-dimer >0.5 µg/mL had a sensitivity of 79.2% and specificity of 60% in the prediction of cardiovascular manifestations. Cardiac failure was one of the causes of death in 3/8 patients (37.5%). Lethality in the presence of cardiovascular pathology was 17.9 versus 2.2% without it, p < 0.05. The most powerful prognostic model includes age, diabetes, oxygen therapy volume, maximum leukocyte level, C-reactive protein, and D-dimer (correlation coefficient 0.871, p < 0.001). The model with only age, diabetes, and cardiovascular disease included also had predictive power (correlation coefficient 0.568, p < 0.001). CONCLUSIONS: The cardiovascular pathology is frequent in patients with COVID-19 and strong correlates with the D-dimer. It indicates the high significance of prothrombotic and ischemic mechanisms. High AHA levels may reflect an inflammatory heart injury. The cardiovascular pathology is associated with higher lethality.


Subject(s)
COVID-19/immunology , Cardiovascular Diseases/immunology , Myocardium/immunology , Pneumonia/immunology , SARS-CoV-2/physiology , Aged , Autoantibodies/blood , COVID-19/diagnosis , COVID-19/epidemiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Female , Humans , Incidence , Inflammation , Male , Middle Aged , Models, Statistical , Myocardium/metabolism , Myocardium/pathology , Pneumonia/epidemiology , Prognosis , Russia/epidemiology , Troponin T/metabolism
11.
Nature ; 590(7844): 29-31, 2021 02.
Article in English | MEDLINE | ID: covidwho-1038200
12.
Eur J Immunol ; 51(4): 893-902, 2021 04.
Article in English | MEDLINE | ID: covidwho-986037

ABSTRACT

The aim of this study is to evaluate the blood level of anti-heart antibodies (AHA) and its correlation with clinical outcomes in patients with severe and moderate coronavirus disease 2019 (COVID-19). The study included 34 patients (23 males; mean age 60.2 ± 16.6 years) with COVID-19 pneumonia. Besides standard medical examination, the AHA blood levels were observed, including antinuclear antibodies, antiendothelial cell antibodies, anti-cardiomyocyte antibodies (AbC), anti-smooth muscle antibodies (ASMA), and cardiac conducting tissue antibodies. Median hospital length of stay was 14 [13; 18] days. AHA levels were increased in 25 (73.5%) patients. Significant correlation (p < 0.05) of AHA levels with cardiovascular manifestations (r = 0.459) was found. AbC levels correlated with pneumonia severity (r = 0.472), respiratory failure (r = 0.387), need for invasive ventilation (r = 0.469), chest pain (r = 0.374), low QRS voltage (r = 0.415), and levels of C-reactive protein (r = 0.360) and lactate dehydrogenase (r = 0.360). ASMA levels were found to correlate with atrial fibrillation (r = 0.414, p < 0.05). Antinuclear antibodies and AbC levels correlated with pericardial effusion (r = 0.721 and r = 0.745, respectively, p < 0.05). The lethality rate was 8.8%. AbC and ASMA levels correlated significantly with lethality (r = 0.363 and r = 0.426, respectively, p < 0.05) and were prognostically important. AHA can be considered as part of the systemic immune and inflammatory response in COVID-19. Its possible role in the inflammatory heart disease requires further investigation.


Subject(s)
Antibodies, Antinuclear/blood , COVID-19/immunology , COVID-19/pathology , Myocytes, Cardiac/immunology , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Antinuclear/immunology , Atrial Fibrillation/pathology , Autoantibodies/blood , Autoantibodies/immunology , C-Reactive Protein/analysis , Endothelial Cells/immunology , Female , Heart/physiopathology , Humans , L-Lactate Dehydrogenase/blood , Male , Middle Aged , Muscle, Smooth/immunology , Myocardium/immunology , Pericardial Effusion/pathology , Young Adult
13.
JAMA Cardiol ; 5(11): 1281-1285, 2020 11 01.
Article in English | MEDLINE | ID: covidwho-676377

ABSTRACT

Importance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be documented in various tissues, but the frequency of cardiac involvement as well as possible consequences are unknown. Objective: To evaluate the presence of SARS-CoV-2 in the myocardial tissue from autopsy cases and to document a possible cardiac response to that infection. Design, Setting, and Participants: This cohort study used data from consecutive autopsy cases from Germany between April 8 and April 18, 2020. All patients had tested positive for SARS-CoV-2 in pharyngeal swab tests. Exposures: Patients who died of coronavirus disease 2019. Main Outcomes and Measures: Incidence of SARS-CoV-2 positivity in cardiac tissue as well as CD3+, CD45+, and CD68+ cells in the myocardium and gene expression of tumor necrosis growth factor α, interferon γ, chemokine ligand 5, as well as interleukin-6, -8, and -18. Results: Cardiac tissue from 39 consecutive autopsy cases were included. The median (interquartile range) age of patients was 85 (78-89) years, and 23 (59.0%) were women. SARS-CoV-2 could be documented in 24 of 39 patients (61.5%). Viral load above 1000 copies per µg RNA could be documented in 16 of 39 patients (41.0%). A cytokine response panel consisting of 6 proinflammatory genes was increased in those 16 patients compared with 15 patients without any SARS-CoV-2 in the heart. Comparison of 15 patients without cardiac infection with 16 patients with more than 1000 copies revealed no inflammatory cell infiltrates or differences in leukocyte numbers per high power field. Conclusions and Relevance: In this analysis of autopsy cases, viral presence within the myocardium could be documented. While a response to this infection could be reported in cases with higher virus load vs no virus infection, this was not associated with an influx of inflammatory cells. Future investigations should focus on evaluating the long-term consequences of this cardiac involvement.


Subject(s)
Autopsy/methods , COVID-19/complications , Cardiovascular Infections/etiology , SARS-CoV-2/genetics , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/virology , Cardiovascular Infections/metabolism , Cardiovascular Infections/virology , Chemokines/metabolism , Cohort Studies , Female , Germany/epidemiology , Humans , Incidence , Interferon-gamma/metabolism , Interleukin-18/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Male , Myocarditis/etiology , Myocarditis/metabolism , Myocarditis/virology , Myocardium/immunology , Myocardium/metabolism , Pandemics , Peptide Fragments/metabolism , SARS-CoV-2/isolation & purification , Tumor Necrosis Factor-alpha/metabolism , Viral Load/statistics & numerical data
14.
Transpl Infect Dis ; 22(5): e13382, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-613573

ABSTRACT

BACKGROUND: The impact of COVID-19 on heart transplant (HTx) recipients remains unclear, particularly in the early post-transplant period. METHODS: We share novel insights from our experience in five HTx patients with COVID-19 (three within 2 months post-transplant) from our institution at the epicenter of the pandemic. RESULTS: All five exhibited moderate (requiring hospitalization, n = 3) or severe (requiring ICU and/or mechanical ventilation, n = 2) illness. Both cases with severe illness were transplanted approximately 6 weeks before presentation and acquired COVID-19 through community spread. All five patients were on immunosuppressive therapy with mycophenolate mofetil (MMF) and tacrolimus, and three that were transplanted within the prior 2 months were additionally on prednisone. The two cases with severe illness had profound lymphopenia with markedly elevated C-reactive protein, procalcitonin, and ferritin. All had bilateral ground-glass opacities on chest imaging. MMF was discontinued in all five, and both severe cases received convalescent plasma. All three recent transplants underwent routine endomyocardial biopsies, revealing mild (n = 1) or no acute cellular rejection (n = 2), and no visible viral particles on electron microscopy. Within 30 days of admission, the two cases with severe illness remain hospitalized but have clinically improved, while the other three have been discharged. CONCLUSIONS: COVID-19 appears to negatively impact outcomes early after heart transplantation.


Subject(s)
Allografts/pathology , COVID-19/immunology , Endocardium/pathology , Graft Rejection/pathology , Heart Transplantation/adverse effects , Myocardium/pathology , Aged , Allografts/immunology , Allografts/ultrastructure , Biopsy , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/pathology , COVID-19 Nucleic Acid Testing , Endocardium/immunology , Endocardium/ultrastructure , Female , Graft Rejection/immunology , Graft Rejection/prevention & control , Humans , Immunosuppressive Agents/adverse effects , Male , Microscopy, Electron , Middle Aged , Myocardium/immunology , Myocardium/ultrastructure , New York City/epidemiology , Pandemics , Retrospective Studies , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL